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Random Walk on Distant Mesh Points 
Monte Carlo Methods 

L DimoC and O. ToneC 

Received September 21, 1991; final May 5, 1992 

A n~w technique for obtaining Monte Carlo algorithms based on the Markov 
chains with a finite number of states is suggested. Instead of the classical 
"random walk on neighboring mesh points," a general way of constructing 
Monte Carlo algorithms that could be called "random walk on distant mesh 
points" is considered. It is applied to solve boundary value problems. The 
numerical examples indicate that the new methods are less laborious and there- 
fore more efficient. 
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1. I N T R O D U C T I O N  

M o n t e  Car lo  numer ica l  me thods  are very efficient for solving mul t id imen-  
s ional  p rob lems  of  ma thema t i ca l  physics and  engineering where a l inear  
funct ional  of  so lu t ion  is sought.  F o r  p rob lems  to be efficiently solved by 
M o n t e  Car lo  methods ,  large-scale  compu ta t i o ns  are needed, and  so the 
cons t ruc t ion  of less l abor ious  M o n t e  Car lo  a lgor i thms is very impor tan t .  

The me thods  cons t ruc ted  here are based  on M a r k o v  chains with a 

finite number  of states. 
Let  G c E" be a b o u n d e d  d o m a i n  with a b o u n d a r y  ~G. 
We use the fol lowing nota t ions :  x = ( x l , x 2 , . . . , x , )  is a poin t  in 

~ , ;  D ~ _  ~,~ ~2 . ~, - D 1 D  2 .. D ,  is a n  ] ~ [ = ~ 1 - ] - ~ 2 " ~ - ' .  +C~, derivative,  where 
Di = O/Oxi, i = 1, 2 ..... n; and  C~(G) is a space of funct ions u(x)  con t inuous  
on G such that  D~u exists in G and  admi ts  a con t inuous  extension on C for 

every c~: Ic~i ~<k. 
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We consider the boundary value problem 

Lu =- ~ a~(x) D~u(x)=- f (x ) ,  
[c~[ ~< 2m 

u(x) = g(x), x ~ G  

where L is an arbitrary elliptic operator in N~ 
a~(x) ~ C~176 

A widely used definition of ellipticity is as follows. 
The equation 

x e G  

of order 

(1) 

(2) 

2m and 

a~(x) O~u(x) = - f ( x )  
I~[ ~< 2m 

is called elliptic in a domain G if 

2 ae(x) ~cq ~c~z " ' " ~ ,  7~0 when I ~ [ ~ 0  
I~l -< 2m 

holds for every point x e G. The corresponding operator ~]l~l-<2m a~(x)D~ is 
called elliptic in G. 

This problem arises from models in field theory, electron optics, heat 
conductivity, and other areas of computational  mathematics. 

Assume that f (x ) ,  g(x), and the boundary c?G satisfy all conditions 
ensuring that the solution of the problem (1), (2) exists and is unique. (1) 

Constructing a regular mesh (lattice) with step h in En (see Fig. 1), we 
introduce the following notations: Gh is the set of all inner mesh points 
(7 ~ Gh r 7 ~ G); 8Gh is the set of all "boundary" mesh points (7 e 8Gh if 
there exists a neighbor mesh point 7 '~  Rn\G); and vh is a mesh function 
(function defined on a set of mesh points). 

"bour ld l ry"  r~e.~h pelnt3 

I I I..,..I I I I I ' h  
/I I I I  I , + I  I I L ~ '  ....... "oo'o'. 
tI I-.-I I I I I I I I  II 
H ~ o I I I I / ~  n - c - L ~  

Fig. 1. A grid of mesh points. A mesh function vh is defined on a set of mesh points 
vh={vi:vi=v(xi)}'~=l, where n is the number of points belonging to the set GhwcqGh. 
A simple pattern (lattice) P~(2h) in R a is shown. 
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Then the differential operator L at the mesh point x i6G h is 
approximated by a difference operator Lh as follows: 

(Lhvh)i---- ~, Ah(x i, xj) vh(xi) (3) 
xj ~ Pk(xi) 

where Ah(x~, xj) are coefficients; and Pk(x~) is a set of mesh points with 
center in xi e Gh called a pattern. 

Since Gh = Gh u 0Gh is a finite set, there exists a finite number of pat- 
terns Pk(x~) (k = 1, 2,..., m and m depends on x~) on which the differential 
operator could be approximated. 

The "random walk on neighboring mesh points" Monte Carlo method 
is well known in the case when L is Laplace's operator~:): 

ru-D~u+ D2u (4) 

and PK(Xi) is the five-point pattern (see Fig. 1). 
A Markov chain with a finite number of states is constructed. The 

transition probabilities on it are given as follows: 

(1/4, 7 e Gh 
P~, ) (5) 

where 6~, is the Kronecker notation (6~, = 1 when 7 = 7' and it is 0 when 
7 # 7') and ~' is a mesh point neighboring to 7. This means that beginning 
from a point 7 e Gh, the random process goes to the one of its neighboring 
points with a probability equal to 1/4. The random walk dies on the 
boundary #Gh. The "random walk on neighboring mesh point" is based on 
the following theorem: 

T h e o r e m  1. Let x0 be the originating point for the Markov chain 
constructed above. Then the solution of the difference problem correspond- 
ing to the problem (1), (2) at the point x0 is given by the mathematical 
expectation of the random variable constructed in the following manner: 

1 2 i*  1 

~=~h E fh(xi)+gh(xi *) (6) 
~=o 

This method is widely used, but it is relatively more laborious [the 
number of simple operations is R ~ c / ~  3, where E is the relative error 
needed for the solution of the problem (1), (2)]. 

Due to the transition from a point to one of its neighboring points this 
method has a slow rate of convergence. 

The Monte Carlo method called the spherical process (3'4) and its 
generalization(5, 6) are less laborious (R~ ~ [ln e[/ez). 

This approach is based on an integral representation of the solution by 
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the Green's function. But for many boundary value problems an integral 
representation does not exist. When such a representation exists it is 
necessary to have a contractive integral operator with the Green's function 
in order to use a classical Monte Carlo method. This means that the norm 
of the integral operator K in the corresponding functional space (usually in 
the space L~ or L2) must be less than 1, i.e., 

liKI[ < 1 

When this condition is not satisfied it is necessary to use a biased 
estimation stopping the random process in the ~-strip of the domain G. (4) 
But it is difficult to implement this when f (x )  is a mesh function. So it is 
better to construct an efficient Monte Carlo method for solving the discrete 
problem arising from the differential problem (1), (2) because usually the 
function f (x )  is obtained as a solution of another finite difference problem. 

2. GENERAL DEFIN IT ION OF THE " R A N D O M  W A L K  ON 
D I S T A N T  M E S H  P O I N T S "  M E T H O D S  

Due to the above considerations, the following questions arises: Are 
there any Markov processes for solving the problem (1), (2) realizing 
transitions not to neighboring but to more distant mesh points? 

The definition of such processes will provide a construction of the 
"random walk on distant mesh points" algorithms. 

We next consider the definition of the above Markov processes and 
the construction of the algorithms. 

Assume that the values of uh(x) have been computed at the mesh 
points V ~ c3Gh using the values of g(x) in such a way that the accuracy is 
the same as for the inner mesh points. 

Then, by means of (3) the problem (1), (2) can be modified as follows: 

Ah(X/, xj) uh(xj)= --fh(xi) (7) 
xjE Pko(Xi) = Gh 

or, which is the same, 

uh(xi) = ~ a h ( x i ,  xj) uh(xj) + bh(x,) fh(xi) (8) 
~:j ~ P~o(X~) 

where 
Pk~o(Xi) -~ e k o ( X i ) \  { X i }  

&(x/, xj) 
ah(x~, x j )  = - & ( x i ,  x i i  

1 
bh(•  = - 

A h ( x i ,  x , )  
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Instead of uh(xj) we can use the linear combination on the pattern 
P~'~(xj) where xj ~ P*0(x~) and Pkl in general differs from Pk0 : 

xj e p?o(x,) kxk  c e~(xj)  = ah A 

+ bh(Xi) f h ( X i )  

= Y 

xk ~ P~i(xi) = Gh 

+ ~ b],(xj) fh(xj) + bh(x~) fh(x~) (9) 

* * where the P*i(x~)~are a composition from the Pk0(xi) and Pk~(xj) 
[xj ~ P~'0(x~)] while ah and bh are coefficients. 

These replacements can be applied until a pattern * PkN+ ~(Xi) is reached. 
Thus the following formula is obtained: 

u / , ( x i )  = ~ aN( Xi, Xm) Uh(Xm) + 2 b N ( X m )  f h ( X m )  
Xm ~ P~  (xi) = Gh Xm ~ P*kN_l(xi) 

+ fh(x ) 

Assume that the operator L and the patterns Pk are such that 

(10) 

N N ah(xi, Xm)=l and a h(x~, Xm)>~0 (11) 
X m E P~v(Xi) = C h 

Then the transition probabilities on the corresponding Markov chain 
can be defined in the following manner: 

P(x i, x,,,) N = a h ( x  i, x,~), Xm~Pk,u(Xi) (12) 

and the required random variable is 

i * - - i  

0 = h 2 Z (13) 
i = 1  

[ x ~  p~_~(x~ bU(xm)fh(xm)+ bh(xi)fh(xi)] + gh(xi.) 

3. THE " R A N D O M  W A L K  ON MESH OCTAHEDRONS'"  
M E T H O D  

Consider the Laplace equation in R 3 approximated on seven-point 
patterns [Pk~(xi) is the same for every k = 1, 2 ..... N]. 

The superpattern Pk(xi) in this case will be a family of concentric 
mesh octahedrons with centers in xi the largest of which has an Nh 
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semidiagonal and the others, respectively, nh, where n = N - 2 ,  N - 4  ..... r 
and 

{12 w h e n N i s o d d  
r = when N is even 

So, if xo=( i~  h, i~ i~ h) is the center of the octahedron set, the 
coordinates of an arbitrary mesh point  on them will be 

i 1 = i ~  

i 2 = i ~  + l  (14) 

i 3 = i ~  
N Figure 2 shows the intersection of the superpattern P . . . .  t with the 

plane x3 = 0. 
u Let P . . . .  t be the transition probability from the point x0 to a point x~ 

which lies at the intersection of the mth plane and the nth octahedron from 
the family of octahedrons with a maximum semidiagonal Nh. 

T h e o r e m  2. The solution of the difference problem corresponding 
to the Dirichlet problem for the Poisson equation at the point x o e Gh is 
equal to the mathematical expectation of the random variable 

0 = hZ(F,,o + F,,o + . . .  + F,,~ ~) + gh(x~ 

/ S 

t 

/ 
& 

/ N ~ ,  , % \ 

\ 

~, , / 2  " N=~ t 

l 

" ) 

\~  
' I 

.I Ii 

Fig. 2 
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N The random variable 0 is obtained when the transition probabilities P . . . .  ! 
N - -  N N on the Markov chain are P . . . .  t - R  . . . .  z/Q , where 

N-- I  N 1 N - - 1  N-- I  N- - I  
Rm,  n + l , l ' + ' R m ,  n + l , l + l  W Rm,  n I , l - 1  - } -R  . . . .  1 , l+  R m + l , n , !  

N --  N--I  1~ . . . .  l-- q-Rm_l,n,l, l = 1  ..... n - l ;  m = 0  ..... N - I  

2 R N - 1  N l U--1 N 1 U--1 
*~rn, n + l  lW Rm, n+ld+l + R . . . .  1.l 1 - ~ ' R m + l , n , l " ~  R m  - , , 1,n,l, 

/ = 1  ..... n; m = 0  ..... N - l ,  if I = n  

0 in the other cases 

and 

N - - 1  

Q N = 6  N _  2 6 N -  1Ri  
0,1,0 

i = 1  

and for the ith transition 

N-- I  N- - I  

F,,~= Z Z SN o o o + .o .o . . . .  l ( L l + n - - l ,  i2+l, i3+m L l + n  1,12--l,i~+m 
m = l - - N  n = l  l = 1  

~- L ~ - -  n + l,i 0 + l, io+ m ~ - L o - - n  + l , i~- l,i~ +m) S~,o, oL~ 

T N  _ ~ N - - 1  
0,0,0 - -  ~ 

N 
N _ T. , , . , I  1 

= { R , , , , , , + 6 [ R  . . . .  , + 6 ( R  .. . .  , + - . - + 6 R  . . . .  , ) ' " 3 }  Sm, n , l -  Q N  Q N  N 1 N--2 U--3 m+n 

These results are used for constructing the algorithm called "random 
walk on mesh octahedrons," which coincides with the "random walk on 
neighboring mesh points" when N = 1. 

If Laplace's equation is approximated on a nine-point pattern (the set 
of corner points of the mesh cube and its center), we obtain a method that 
could be called "random walk on mesh cubes." 

Next pX will denote the transition probability from the mesh point 
(i o, t2 ,.o i o) to the mesh point (i ~  i ~  i ~  

which belongs to the mesh octahedron family the largest of which has a 
dimension 2Nh. 

To simplify the formulas, we introduce the following notation: 

. ~1 if I j r ] = ] i r - i ~  r = 1 , 2 , 3  

7j = ).0 in the other cases 
(15) 
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T h e o r e m  3. The solution of the difference Poisson equation at the 
point Xoe Gh is given by the mathematical expectation of the random 
variable 

0 = 4h2(F,,~ + F,,~ + . . .  + Fxy * ~) + gh(x,,) 

which corresponds to the Markov chain with transition probabilities 
N N N P k  = R k / Q  , where 

N - 2  U - 2  U 
N / 2 -  1 - j v J \ N / 2 -  1 - J r ] '  Js = 2 -  1 

for q = 1 , 2 , 3 ,  q r 1 6 2  

I ( N ~  3 
AT= 8 \ N / 2 J  ' j l  = j 2 = j 3  = 0  

A N 1 j l + l / 2 , j 2 + l / 2 , j 3 + l / 2 _ { _ m  N 1 , A N - 1  Jl  + 1/2, j2 + 1/2, j3 1/2 -1- J l  + 1/2, j2 1/2,j3 + 1/2 

. . ~ A N - I  N--1 A N 1 
Jl + 1 / 2 , j 2 - 1 / 2 , j 3  1/2 -k- A jl  1/2,j2 + 1/2,j3 + 1/2 "~ Jl  1/2,j2 + 1/2,j3 1/2 

A N -  1 -1- A N -  1 in the other c a s e s  J l  - 1/2,j2 - 1/2, j3 + 1/2 t Jl  - 1 / 2 , j 2 - 1 / 2 , j 3  - 1/2 

N--1  
Q N  8 N E ~ N - - i R i  

= - -  ~ ~ N / 2 ,  N/2, N/2 
1 = 1  

and in the qth transition 

2 N  1 2 N - - 1  2 N  1 

F,,~ = Z Z Z s'N/2/3L~ N + h,* ~ N + /2,i]-- N + /3 
/ 3 = 1  / 2 = 1  11=1 

( 8 N -  1/QN, Ii = 12 = 13 = N 
T N I 

S N 111213 = g t ' } - - N ( R N - - 1  .4- 8 r  N 1 
h/3/3--  QN )~ t (11--1)/2,(12 1)/2,(/3 1 ) / 2 - -  ~. (/1 2)/2,(12 2)/2,(13 2)/2 

R N 1 
[. -]- " '"  -{- (ll--m)/2,(12 m)/2,(13 r n ) / 2 ) ' ' '  ) 

This result is used in constructing the "random walk on mesh squares" 
algorithm. 

It is possible to construct an algorithm which is less laborious than 
those above. 

Using a special sequence of patterns, we reach a superpattern of the 
same kind as the starting five-point one but in which one of the points 
"neighboring" x 0 belongs to aGe. 

This construction is next applied to solve the Dirichlet problem for the 
Laplace equation in R 2. 
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We shall use the following five-point patterns with centers at the mesh 
point x~,j = (ih, jh): 

Po(xi, j) = x i_ l , j  xi, j x i+l, j  (16) 

Xi, j-- 1 
and 

Xiil'j+l Xi+l'j+l) 
Po(xi, j) = xi, j 

Xi 1,j-- I Xi+ 1,j-- 1 /  

(17) 

where the second-order derivatives are approximated with an accuracy 
O ( h 2 ) .  (1) 

The first step is the approximation of the Laplace equation at the 
mesh point xi, j by using the pattern P~o(Xo). Next, following the general 
definition of the method, we reach the approximation on a superpattern 

Xi, j + N ) 
PN(Xi, j) = Xi_N, j Xi, j Xi+N,j 

Xi, j N 
we obtain the formula 

1 U Hi, j= "~( i_N,j~-Ui+N,j~-Hi, j_N'~-bli, j+N) ( 1 8 )  

where ui, j = Uh(Xi, j), Xi, j E Gh. 
This method could be called "random walk on most distant mesh 

points." 

4. N U M E R I C A L  EXAMPLES 

To compare the labor cost of Monte Carlo algorithms, we will 
demonstrate the solution of a simple numerical example which has an exact 
solution. 

The Laplace equation 

(D2 + D22)u=O (19) 

with boundary condition 

u = 400 + 100(x~ - x 2) (20) 

where x belongs to the rectangle ~ = {0 ~< x 1 ~< 1, 0 ~< x2 ~< 2} was solved by 
the "random walk on neighboring mesh points" (RWNMP),  "random walk 
on mesh squares" (RWMS), and "random walk on most distant mesh 
points" ( R W MDMP)  algorithms. 
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Table  I. Results fo r  D i f f e r e n t  A l g o r i t h m s  a 

Coordinates Exact 
of the point solution 

Approximate solution T=  t. 6 

K RWNMP RWMS RWMDMP RWNMP RWMS RWMDMP 

(1/2, 1) 325.00 200 323.2 119.4 302.7 0.1643 0.258 0.1374 
(1/2, 1) 325.00 1000 316.5 315.8 316.3 4.366 2.858 0.268 

(2/5, 2/5) 400.00 200 390.2 396.1 393.8 0.5386 0.1421 0.0217 
(1/2, 2/5) 400.00 1000 393.6 394.3 396.3 1.869 1.008 0.1163 

a RWNMP, random walk on neighboring mesh points; RWMS, random walk on mesh 
squares; RWMDMP, random walk on most distant mesh points. 

The exact solution of the problem (19), (20) coincides with (20). 
We seek the solution of (19), (20) at the mesh points with coordinates 

(0.5, l) and (0.4, 0.4). 
The transition probabilities for the RWMS algorithm are 

N {1/12 when /=0 ,  2 
P . . . .  l-= Po,2,I-= 1/4 when l=  1 (21) 

The computing effort is measured by the parameter t6, where t is the time 
of obtaining the solution at the fixed point and 6 is the relative error. In 
order to estimate the mathematical expectation, the arithmetic average of 
K realizations of the random processes is used (random variables are 
and 0). The calculations are carried out on IBM PC compatible computers. 
Table I gives the calculations. The correlations between computing efforts 
for the other computers are approximately the same. 

In conclusion, we mention that all Monte Carlo algorithms are 
parallel and could be easily realized on parallel computers. 
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